Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38259170

RESUMO

A bacterial strain, designated NLS-7T, was isolated through enrichment of landfill cover soil in methane-oxidizing conditions. Strain NLS-7T is a Gram-stain negative, non-motile rod, approximately 0.8 µm wide by 1.3 µm long. Phylogenetic analysis based on 16S rRNA gene sequencing places it within the genus Methylocystis, with its closest relatives being M. hirsuta, M. silviterrae and M. rosea, with 99.9, 99.7 and 99.6 % sequence similarity respectively. However, average nucleotide identity and average amino acid identity values below the 95 % threshold compared to all the close relatives and digital DNA-DNA hybridization values between 20.9 and 54.1 % demonstrate that strain NLS-7T represents a novel species. Genome sequencing generated 4.31 million reads and genome assembly resulted in the generation of 244 contigs with a total assembly length of 3 820 957 bp (N50, 37 735 bp; L50, 34). Genome completeness is 99.5 % with 3.98 % contamination. It is capable of growth on methane and methanol. It grows optimally at 30 °C between pH 6.5 and 7.0. Strain NLS-7T is capable of atmospheric dinitrogen fixation and can use ammonium (as NH4Cl), l-aspartate, l-arginine, yeast extract, nitrate, l-leucine, l-proline, l-methionine, l-lysine and l-alanine as nitrogen sources. The major fatty acids are C18:1 ω8c and C18:1 ω7c. Based upon this polyphasic taxonomic study, strain NLS-7T represents a novel species of the genus Methylocystis, for which the name Methylocystis suflitae sp. nov. is proposed. The type strain is NLS-7T (=ATCC TSD-256T=DSM 112294T). The 16S rRNA gene and genome sequences of strain NLS-7T have been deposited in GenBank under accession numbers ON715489 and GCA_024448135.1, respectively.


Assuntos
Methylocystaceae , Methylocystaceae/genética , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , Bactérias , Metano
2.
Sci Adv ; 9(2): eadd3783, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36638170

RESUMO

Microcystis, a common harmful algal bloom (HAB) taxon, threatens water supplies and human health, yet species delimitation is contentious in this taxon, leading to challenges in research and management of this threat. Historical and common morphology-based classifications recognize multiple morphospecies, most with variable and diverse ecologies, while DNA sequence-based classifications indicate a single species with multiple ecotypes. To better delimit Microcystis species, we conducted a pangenome analysis of 122 genomes. Core- and non-core gene phylogenetic analyses placed 113 genomes into 23 monophyletic clusters containing at least two genomes. Overall, genome-related indices revealed that Microcystis contains at least 16 putative genospecies. Fifteen genospecies included at least one Microcystis aeruginosa morphospecies, and 10 genospecies included two or more morphospecies. This classification system will enable consistent taxonomic identification of Microcystis and thereby aid in resolving some of the complexities and controversies that have long characterized eco-evolutionary research and management of this important HAB taxon.


Assuntos
Microcystis , Humanos , Microcystis/genética , Filogenia , Sequência de Bases , Ecologia
3.
Biomolecules ; 12(4)2022 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-35454149

RESUMO

Particulate methane monooxygenase (pMMO), a membrane-bound enzyme having three subunits (α, ß, and γ) and copper-containing centers, is found in most of the methanotrophs that selectively catalyze the oxidation of methane into methanol. Active sites in the pMMO of Methylosinus trichosporium OB3b were determined by docking the modeled structure with ethylbenzene, toluene, 1,3-dibutadiene, and trichloroethylene. The docking energy between the modeled pMMO structure and ethylbenzene, toluene, 1,3-dibutadiene, and trichloroethylene was -5.2, -5.7, -4.2, and -3.8 kcal/mol, respectively, suggesting the existence of more than one active site within the monomeric subunits due to the presence of multiple binding sites within the pMMO monomer. The evaluation of tunnels and cavities of the active sites and the docking results showed that each active site is specific to the radius of the substrate. To increase the catalysis rates of methane in the pMMO of M. trichosporium OB3b, selected amino acid residues interacting at the binding site of ethylbenzene, toluene, 1,3-dibutadiene, and trichloroethylene were mutated. Based on screening the strain energy, docking energy, and physiochemical properties, five mutants were downselected, B:Leu31Ser, B:Phe96Gly, B:Phe92Thr, B:Trp106Ala, and B:Tyr110Phe, which showed the docking energy of -6.3, -6.7, -6.3, -6.5, and -6.5 kcal/mol, respectively, as compared to the wild type (-5.2 kcal/mol) with ethylbenzene. These results suggest that these five mutants would likely increase methane oxidation rates compared to wild-type pMMO.


Assuntos
Methylosinus trichosporium , Tricloroetileno , Catálise , Cobre/metabolismo , Metano/metabolismo , Methylosinus trichosporium/genética , Methylosinus trichosporium/metabolismo , Tolueno/metabolismo , Tricloroetileno/metabolismo
4.
Environ Res ; 209: 112732, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35077715

RESUMO

Decomposing cyanobacterial bloom-induced black blooms been seen as an issue in the management of freshwater ecosystems, but its effect on sulfate-reducing bacteria (SRB) in shallow freshwater lakes is not clear. The objective of this study is to present an in-depth investigation of black bloom effects on the activities and composition of SRB, as well as the interactions between SRB and other bacteria. Water and surface sediments samples were collected from a shallow freshwater lake during black and non-black blooms. Sulfate reduction rates (SRRs) in the water column were determined from the linear regression of sulfate depletion with time. Quantitative real-time polymerase chain reactions (qPCRs), targeting the dsrA gene and Illumina sequencing of 16S rDNA, were used to estimate the SRB population and SRB community structures, respectively. Our data indicate that although a higher abundance of SRB was responsible for the higher SRR in the bottom water (34.09 ±â€¯2.37 nmol mL-1 day-1) than in the surface water (14.57 ±â€¯2.91 nmol mL-1 day-1) during black blooms, cell-specific sulfate reduction rates (csSRRs) in the distinct water layers were not significantly different (P = 0.95), with the value of approximately 0.017 fmol cell-1 day-1. Additionally, Desulfomicrobium and Desulfovibrio were the two main genera of SRB in the water column during black bloom season, while Desulfobulbus, Desulfobacca and Desulfatiglans genera were identified in the sediments of both the black and non-black blooms in genera pools. Each SRB genus preferentially associated with bacteria for specific functions in the bacterial co-occurrence network, regardless of whether black booms occurred or not. These results extend our knowledge on the importance of SRB during black blooms and the adaptation of SRB to environmental changes in freshwater lakes.


Assuntos
Cianobactérias , Lagos , Ecossistema , Eutrofização , Lagos/química , Sulfatos
5.
Environ Microbiol ; 23(11): 6503-6519, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34327792

RESUMO

Global warming and eutrophication contribute to the worldwide increase in cyanobacterial blooms, and the level of cyanobacterial biomass is strongly associated with rises in methane emissions from surface lake waters. Hence, methane-metabolizing microorganisms may be important for modulating carbon flow in cyanobacterial blooms. Here, we surveyed methanogenic and methanotrophic communities associated with floating Microcystis aggregates in 10 lakes spanning four continents, through sequencing of 16S rRNA and functional marker genes. Methanogenic archaea (mainly Methanoregula and Methanosaeta) were detectable in 5 of the 10 lakes and constituted the majority (~50%-90%) of the archaeal community in these lakes. Three of the 10 lakes contained relatively more abundant methanotrophs than the other seven lakes, with the methanotrophic genera Methyloparacoccus, Crenothrix, and an uncultured species related to Methylobacter dominating and nearly exclusively found in each of those three lakes. These three are among the five lakes in which methanogens were observed. Operational taxonomic unit (OTU) richness and abundance of methanotrophs were strongly positively correlated with those of methanogens, suggesting that their activities may be coupled. These Microcystis-aggregate-associated methanotrophs may be responsible for a hitherto overlooked sink for methane in surface freshwaters, and their co-occurrence with methanogens sheds light on the methane cycle in cyanobacterial aggregates.


Assuntos
Euryarchaeota , Microcystis , Archaea/genética , Euryarchaeota/genética , Eutrofização , Lagos/microbiologia , Metano , Microcystis/genética , RNA Ribossômico 16S/genética
6.
Chemosphere ; 256: 127101, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32450355

RESUMO

Previous studies of the dynamics of sulfate-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB) have focused on deep stratified lakes. The objective of this study is to present an in-depth investigation of the structure and dynamics of sulfur bacteria (including SRB and SOB) in the water column of shallow freshwater lakes. A cyanobacterial bloom biomass (CBB)-amended mesocosm experiment was conducted in this study, in which water was taken from a shallow eutrophic lake with sulfate levels near 40 mg L-1. Illumina sequencing was used to investigate SRB and SOB species involved in CBB decomposition and the effects of the increases in sulfate input on the water column microbial community structure. The accumulation of dissolved sulfide (∑H2S) produced by SRB during CBB decomposition stimulated the growth of SOB, and ∑H2S was then oxidized back to sulfate by SOB in the water column. Chlorobaculum sequences (the main SOB species in the study) were significantly influenced by increases in sulfate input, with relative abundance increasing approximately four-fold in treatments amended with 40 mg L-1 sulfate (referred to as 40S) when compared to the treatment without additional sulfate addition (referred to as CU). Additionally, an increase in SOB number was observed from day 26-37, concurrent with the decrease in SRB number, indicating the succession of sulfur bacteria. These findings suggest that biological sulfur oxidation and succession of sulfur bacteria occur in the water column during CBB decomposition in shallow freshwater ecosystems, and the increases in sulfate input stimulate microbial sulfur oxidation.


Assuntos
Cianobactérias/crescimento & desenvolvimento , Lagos/microbiologia , Biomassa , Chlorobi , Ecossistema , Oxirredução , Sulfatos , Sulfetos , Enxofre/química
7.
Limnol Oceanogr ; 65(Suppl 1): S194-S207, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32051648

RESUMO

Bacteria play key roles in the function and diversity of aquatic systems, but aside from study of specific bloom systems, little is known about the diversity or biogeography of bacteria associated with harmful cyanobacterial blooms (cyanoHABs). CyanoHAB species are known to shape bacterial community composition and to rely on functions provided by the associated bacteria, leading to the hypothesized cyanoHAB interactome, a coevolved community of synergistic and interacting bacteria species, each necessary for the success of the others. Here, we surveyed the microbiome associated with Microcystis aeruginosa during blooms in 12 lakes spanning four continents as an initial test of the hypothesized Microcystis interactome. We predicted that microbiome composition and functional potential would be similar across blooms globally. Our results, as revealed by 16S rRNA sequence similarity, indicate that M. aeruginosa is cosmopolitan in lakes across a 280° longitudinal and 90° latitudinal gradient. The microbiome communities were represented by a wide range of operational taxonomic units and relative abundances. Highly abundant taxa were more related and shared across most sites and did not vary with geographic distance, thus, like Microcystis, revealing no evidence for dispersal limitation. High phylogenetic relatedness, both within and across lakes, indicates that microbiome bacteria with similar functional potential were associated with all blooms. While Microcystis and the microbiome bacteria shared many genes, whole-community metagenomic analysis revealed a suite of biochemical pathways that could be considered complementary. Our results demonstrate a high degree of similarity across global Microcystis blooms, thereby providing initial support for the hypothesized Microcystis interactome.

8.
Environ Sci Technol ; 51(15): 8519-8529, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28677976

RESUMO

Sediment microbial fuel cells (SMFCs) can stimulate the degradation of polycyclic aromatic hydrocarbons in sediments, but the mechanism of this process is poorly understood at the microbial functional gene level. Here, the use of SMFC resulted in 92% benzo[a]pyrene (BaP) removal over 970 days relative to 54% in the controls. Sediment functions, microbial community structure, and network interactions were dramatically altered by the SMFC employment. Functional gene analysis showed that c-type cytochrome genes for electron transfer, aromatic degradation genes, and extracellular ligninolytic enzymes involved in lignin degradation were significantly enriched in bulk sediments during SMFC operation. Correspondingly, chemical analysis of the system showed that these genetic changes resulted in increases in the levels of easily oxidizable organic carbon and humic acids which may have resulted in increased BaP bioavailability and increased degradation rates. Tracking microbial functional genes and corresponding organic matter responses should aid mechanistic understanding of BaP enhanced biodegradation by microbial electrochemistry and development of sustainable bioremediation strategies.


Assuntos
Benzo(a)pireno/metabolismo , Biodegradação Ambiental , Fontes de Energia Bioelétrica , Eletroquímica , Sedimentos Geológicos , Hidrocarbonetos Policíclicos Aromáticos
9.
PeerJ ; 4: e1919, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27114876

RESUMO

Rnf is a membrane protein complex that has been shown to be important in energy conservation. Here, Desulfovibrio alaskensis G20 and Rnf mutants of G20 were grown with different electron donor and acceptor combinations to determine the importance of Rnf in energy conservation and the type of ion gradient generated. The addition of the protonophore TCS strongly inhibited lactate-sulfate dependent growth whereas the sodium ionophore ETH2120 had no effect, indicating a role for the proton gradient during growth. Mutants in rnfA and rnfD were more sensitive to the protonophore at 5 µM than the parental strain, suggesting the importance of Rnf in the generation of a proton gradient. The electrical potential (ΔΨ), ΔpH and proton motive force were lower in the rnfA mutant than in the parental strain of D.alaskensis G20. These results provide evidence that the Rnf complex in D. alaskensis functions as a primary proton pump whose activity is important for growth.

10.
Water Res ; 96: 94-104, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27023925

RESUMO

Increasing sulfate input has been seen as an issue in management of aquatic ecosystems, but its influences on eutrophic freshwater lakes is not clear. In this study, it was observed that increasing sulfate concentration without additional cyanobacterial bloom biomass (CBB) addition did not have an obvious effect on element cycling during 1-year continuous flow mesocosm experiments in which water and sediments were taken from a shallow eutrophic lake with sulfate levels near 1 mM. However, following addition of CBB to mesocosms, sulfate-reducing bacteria (SRB) were observed in the water column, and increasing numbers of SRB in the water column were associated with higher sulfate input. Sulfate amendment (0-70 mg L(-1)) also resulted in a larger amount of total dissolved sulfide (peak values of 5.90 ± 0.36 to 7.60 ± 0.12 mg L(-1)) in the water column and acid volatile sulfide (1081.71 ± 69.91 to 1557.98 ± 41.72 mg kg(-1)) in 0-1 cm surface sediments due to sulfate reduction. During the period of CBB decomposition, increasing sulfate levels in the water column were positively correlated with increasing diffusive phosphate fluxes of 1.23 ± 0.32 to 2.17 ± 0.01 mg m(-2) d(-1) at the water-sediment interface. As increases in sulfide and phosphate release rates deteriorated the water quality/ecosystem and even spurred the occurrence of a black water problem in lakes, the control of sulfate input level should be considered for shallow eutrophic lake management, especially during cyanobacterial bloom periods.


Assuntos
Eutrofização , Lagos , Sedimentos Geológicos/microbiologia , Sulfatos/metabolismo , Sulfetos
11.
Environ Sci Process Impacts ; 17(11): 1930-40, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26452013

RESUMO

Hexavalent chromium (Cr(vi), present predominantly as CrO4(2-) in water at neutral pH) is a common ground water pollutant, and reductive immobilization is a frequent remediation alternative. The Cr(iii) that forms upon microbial or abiotic reduction often co-precipitates with naturally present or added iron (Fe), and the stability of the resulting Fe-Cr precipitate is a function of its mineral properties. In this study, Fe-Cr solids were formed by microbial Cr(vi) reduction using Desulfovibrio vulgaris strain RCH1 in the presence of the Fe-bearing minerals hematite, aluminum substituted goethite (Al-goethite), and nontronite (NAu-2, Clay Minerals Society), or by abiotic Cr(vi) reduction by dithionite reduced NAu-2 or iron sulfide (FeS). The properties of the resulting Fe-Cr solids and their behavior upon exposure to the oxidant manganese (Mn) oxide (birnessite) differed significantly. In microcosms containing strain RCH1 and hematite or Al-goethite, there was significant initial loss of Cr(vi) in a pattern consistent with adsorption, and significant Cr(vi) was found in the resulting solids. The solid formed when Cr(vi) was reduced by FeS contained a high proportion of Cr(iii) and was poorly crystalline. In microcosms with strain RCH1 and hematite, Cr precipitates appeared to be concentrated in organic biofilms. Reaction between birnessite and the abiotically formed Cr(iii) solids led to production of significant dissolved Cr(vi) compared to the no-birnessite controls. This pattern was not observed in the solids generated by microbial Cr(vi) reduction, possibly due to re-reduction of any Cr(vi) generated upon oxidation by birnessite by active bacteria or microbial enzymes. The results of this study suggest that Fe-Cr precipitates formed in groundwater remediation may remain stable only in the presence of active anaerobic microbial reduction. If exposed to environmentally common Mn oxides such as birnessite in the absence of microbial activity, there is the potential for rapid (re)formation of dissolved Cr(vi) above regulatory levels.


Assuntos
Cromo/análise , Recuperação e Remediação Ambiental/métodos , Compostos de Manganês/química , Óxidos/química , Poluentes Químicos da Água/análise , Cromo/química , Cromo/metabolismo , Água Subterrânea , Oxirredução , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo
12.
PeerJ ; 3: e1259, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26417542

RESUMO

Zodletone spring is a sulfide-rich spring in southwestern Oklahoma characterized by shallow, microoxic, light-exposed spring water overlaying anoxic sediments. Previously, culture-independent 16S rRNA gene based diversity surveys have revealed that Zodletone spring source sediments harbor a highly diverse microbial community, with multiple lineages putatively involved in various sulfur-cycling processes. Here, we conducted a metatranscriptomic survey of microbial populations in Zodletone spring source sediments to characterize the relative prevalence and importance of putative phototrophic, chemolithotrophic, and heterotrophic microorganisms in the sulfur cycle, the identity of lineages actively involved in various sulfur cycling processes, and the interaction between sulfur cycling and other geochemical processes at the spring source. Sediment samples at the spring's source were taken at three different times within a 24-h period for geochemical analyses and RNA sequencing. In depth mining of datasets for sulfur cycling transcripts revealed major sulfur cycling pathways and taxa involved, including an unexpected potential role of Actinobacteria in sulfide oxidation and thiosulfate transformation. Surprisingly, transcripts coding for the cyanobacterial Photosystem II D1 protein, methane monooxygenase, and terminal cytochrome oxidases were encountered, indicating that genes for oxygen production and aerobic modes of metabolism are actively being transcribed, despite below-detectable levels (<1 µM) of oxygen in source sediment. Results highlight transcripts involved in sulfur, methane, and oxygen cycles, propose that oxygenic photosynthesis could support aerobic methane and sulfide oxidation in anoxic sediments exposed to sunlight, and provide a viewpoint of microbial metabolic lifestyles under conditions similar to those seen during late Archaean and Proterozoic eons.

13.
Sci Rep ; 5: 10709, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-26023748

RESUMO

This study investigated the interaction of the macrophyte Acorus calamus and sediment microbial fuel cells (SMFC) during the degradation of high molecular weight-polycyclic aromatic hydrocarbons (HMW-PAHs) in sediments. Over 367-days, the combination of macrophyte and SMFC led to an increase in pyrene and benzo[a]pyrene degradation rates by at least 70% compared to SMFC or macrophyte alone. While either the macrophyte or SMFC increased redox potential in sediments, redox potentials near the anode (approximately 6 cm depth) in the macrophyte-SMFC combination were markedly lower than that in the only macrophyte treatment. Moreover, rhizospheric bacterial communities in macrophyte-SMFC and macrophyte treatments were distinctly different. Aerobic genera (Vogesella, Pseudomonas, Flavobacterium and Rhizobium) and anaerobic genera (Longilinea, Bellilinea, Desulfobacca and Anaeromyxobacter) became dominant in the rhizosphere in macrophyte and macrophyte-SMFC treatments, respectively. In addition, the macrophyte-SMFC combination improved the numbers of not only aerobic but anaerobic PAHs degraders in sediments. So, the SMFC employment facilitated the formation of anoxic zones in sediments with oxygen loss and exudates from the roots. As a result, cooperation of anaerobic/aerobic microbial metabolism for accelerating HMW-PAHs removal occurred within sediments after combining macrophytes with SMFC.


Assuntos
Acorus , Benzo(a)pireno/química , Fontes de Energia Bioelétrica , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Pirenos/química , Acorus/crescimento & desenvolvimento , Bactérias , Biodegradação Ambiental
14.
Appl Environ Microbiol ; 81(7): 2339-48, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25616787

RESUMO

In anaerobic environments, mutually beneficial metabolic interactions between microorganisms (syntrophy) are essential for oxidation of organic matter to carbon dioxide and methane. Syntrophic interactions typically involve a microorganism degrading an organic compound to primary fermentation by-products and sources of electrons (i.e., formate, hydrogen, or nanowires) and a partner producing methane or respiring the electrons via alternative electron accepting processes. Using a transposon gene mutant library of the sulfate-reducing Desulfovibrio alaskensis G20, we screened for mutants incapable of serving as the electron-accepting partner of the butyrate-oxidizing bacterium, Syntrophomonas wolfei. A total of 17 gene mutants of D. alaskensis were identified as incapable of serving as the electron-accepting partner. The genes identified predominantly fell into three categories: membrane surface assembly, flagellum-pilus synthesis, and energy metabolism. Among these genes required to serve as the electron-accepting partner, the glycosyltransferase, pilus assembly protein (tadC), and flagellar biosynthesis protein showed reduced biofilm formation, suggesting that each of these components is involved in cell-to-cell interactions. Energy metabolism genes encoded proteins primarily involved in H2 uptake and electron cycling, including a rhodanese-containing complex that is phylogenetically conserved among sulfate-reducing Deltaproteobacteria. Utilizing an mRNA sequencing approach, analysis of transcript abundance in wild-type axenic and cocultures confirmed that genes identified as important for serving as the electron-accepting partner were more highly expressed under syntrophic conditions. The results imply that sulfate-reducing microorganisms require flagellar and outer membrane components to effectively couple to their syntrophic partners; furthermore, H2 metabolism is essential for syntrophic growth of D. alaskensis G20.


Assuntos
Biofilmes/crescimento & desenvolvimento , Clostridiales/fisiologia , Desulfovibrio/fisiologia , Flagelos/fisiologia , Formiatos/metabolismo , Hidrogênio/metabolismo , Simbiose , Clostridiales/crescimento & desenvolvimento , Clostridiales/metabolismo , Elementos de DNA Transponíveis , Desulfovibrio/genética , Desulfovibrio/crescimento & desenvolvimento , Desulfovibrio/metabolismo , Metabolismo Energético , Genes Bacterianos , Interações Microbianas , Mutagênese Insercional , Compostos Orgânicos/metabolismo
15.
PLoS One ; 9(8): e102879, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25144467

RESUMO

Bacterial community composition of different sized aggregates within the Microcystis cyanobacterial phycosphere were determined during summer and fall in Lake Taihu, a eutrophic lake in eastern China. Bloom samples taken in August and September represent healthy bloom biomass, whereas samples from October represent decomposing bloom biomass. To improve our understanding of the complex interior structure in the phycosphere, bloom samples were separated into large (>100 µm), medium (10-100 µm) and small (0.2-10 µm) size aggregates. Species richness and library coverage indicated that pyrosequencing recovered a large bacterial diversity. The community of each size aggregate was highly organized, indicating highly specific conditions within the Microcystis phycosphere. While the communities of medium and small-size aggregates clustered together in August and September samples, large- and medium-size aggregate communities in the October sample were grouped together and distinct from small-size aggregate community. Pronounced changes in the absolute and relative percentages of the dominant genus from the two most important phyla Proteobacteria and Bacteroidetes were observed among the various size aggregates. Bacterial species on large and small-size aggregates likely have the ability to degrade high and low molecular weight compounds, respectively. Thus, there exists a spatial differentiation of bacterial taxa within the phycosphere, possibly operating in sequence and synergy to catalyze the turnover of complex organic matters.


Assuntos
Cianobactérias/crescimento & desenvolvimento , Água Doce/microbiologia , Lagos/microbiologia , Microbiologia da Água , Bacteroidetes/crescimento & desenvolvimento , Bacteroidetes/isolamento & purificação , Biodiversidade , Cianobactérias/isolamento & purificação , Eutrofização/fisiologia , Proteobactérias/crescimento & desenvolvimento , Proteobactérias/isolamento & purificação
16.
PLoS One ; 9(3): e93130, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24682039

RESUMO

Cyanobacterial blooms frequently occur in freshwater lakes, subsequently, substantial amounts of decaying cyanobacterial bloom biomass (CBB) settles onto the lake sediments where anaerobic mineralization reactions prevail. Coupled Fe/S cycling processes can influence the mobilization of phosphorus (P) in sediments, with high releases often resulting in eutrophication. To better understand eutrophication in Lake Taihu (PRC), we investigated the effects of CBB and temperature on phosphorus cycling in lake sediments. Results indicated that added CBB not only enhanced sedimentary iron reduction, but also resulted in a change from net sulfur oxidation to sulfate reduction, which jointly resulted in a spike of soluble Fe(II) and the formation of FeS/FeS2. Phosphate release was also enhanced with CBB amendment along with increases in reduced sulfur. Further release of phosphate was associated with increases in incubation temperature. In addition, CBB amendment resulted in a shift in P from the Fe-adsorbed P and the relatively unreactive Residual-P pools to the more reactive Al-adsorbed P, Ca-bound P and organic-P pools. Phosphorus cycling rates increased on addition of CBB and were higher at elevated temperatures, resulting in increased phosphorus release from sediments. These findings suggest that settling of CBB into sediments will likely increase the extent of eutrophication in aquatic environments and these processes will be magnified at higher temperatures.


Assuntos
Cianobactérias/crescimento & desenvolvimento , Eutrofização/fisiologia , Sedimentos Geológicos/química , Lagos/química , Lagos/microbiologia , Fósforo/química , Biomassa , Monitoramento Ambiental/métodos , Água Doce/análise , Água Doce/química , Água Doce/microbiologia , Sedimentos Geológicos/análise , Sedimentos Geológicos/microbiologia , Lagos/análise , Fosfatos/química , Enxofre/química , Temperatura , Poluentes Químicos da Água/química
17.
Ecotoxicology ; 23(4): 726-33, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24510447

RESUMO

The sulfate reducing bacterium Desulfovibrio alaskensis strain G20 can grow in lactate sulfate medium with up to 4 mM uranyl acetate. In order to identify the genes that are required for the growth of strain G20 at toxic levels of uranium(VI) (U(VI)), 5,760 transposon insertion mutants were screened for U(VI) resistance defects, and 24 of them showed loss of U(VI) resistance in lactate sulfate medium with 2 mM uranyl acetate. In the 24 mutants, 23 genes were disrupted by transposon insertions, and one transposon is located in a non-coding region. In the ten mutants that were completely inhibited by 2 mM uranyl acetate, the disrupted genes are involved in DNA repair, rRNA methylation, regulation of expression and RNA polymerase renaturation. The remaining 14 mutants showed partial inhibition of growth by 2 mM U(VI), in which the disrupted genes participate in DNA repair, regulation of transcription, membrane transport, etc. In addition, none except one of these 24 mutants showed loss in its ability to reduce U(VI) to U(IV) in the washed cell test. These results altogether suggest that U(VI) toxicity mainly involves damage to nucleic acids and proteins.


Assuntos
Desulfovibrio/genética , Urânio/toxicidade , Elementos de DNA Transponíveis , Genes Bacterianos , Mutagênese Insercional
18.
Microbiology (Reading) ; 159(Pt 10): 2162-2168, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23842468

RESUMO

Due to their adjacent location in the genomes of Desulfovibrio species and their potential for formation of an electron transfer pathway in sulfate-reducing prokaryotes, adenosyl phosphosulfate (APS) reductase (Apr) and quinone-interacting membrane-bound oxidoreductase (Qmo) have been thought to interact together during the reduction of APS. This interaction was recently verified in Desulfovibrio desulfuricans. Membrane proteins of Desulfovibrio vulgaris Hildenborough ΔqmoABCD JW9021, a deletion mutant, were compared to the parent strain using blue-native PAGE to determine whether Qmo formed a complex with Apr or other proteins. In the parent strain of D. vulgaris, a unique band was observed that contained all four Qmo subunits, and another band contained three subunits of Qmo, as well as subunits of AprA and AprB. Similar results were observed with bands excised from membrane preparations of Desulfovibrio alaskensis strain G20. These results are in support of the formation of a physical complex between the two proteins; a result that was further confirmed by the co-purification of QmoA/B and AprA/B from affinity-tagged D. vulgaris Hildenborough strains (AprA, QmoA and QmoB) regardless of which subunit had been tagged. This provides clear evidence for the presence of a Qmo-Apr complex that is at least partially stable in protein extracts of D. vulgaris and D. alaskensis.


Assuntos
Desulfovibrio/química , Desulfovibrio/enzimologia , Proteínas de Membrana/metabolismo , NAD(P)H Desidrogenase (Quinona)/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Multimerização Proteica , Deleção de Genes
19.
Microb Ecol ; 66(1): 73-83, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23571665

RESUMO

The phylogenetic diversity of the microbial community assemblage of the carpet-like mucilaginous cyanobacterial blooms in the eutrophic Lake Taihu was investigated. 16S ribosomal DNA clone libraries produced from the DNA of cyanobacterial assemblages that had been washed to remove unattached bacteria contained only cyanobacteria. However, a further treatment which included grinding the freeze-dried material to physically detach cells followed by the removal of larger cells by filtration allowed us to detect a large variety of bacteria within the cyanobacterial bloom community. Interestingly, the dominant members of the microbial community were Planctomycetes followed by Cytophaga-Flavobacterium-Bacteroides (CFB), Betaproteobacteria, and Gammaproteobacteria. The analysis of the 16S ribosomal DNA clone libraries made from enrichment culture revealed much higher phylogenetic diversity of bacteria. Dominant bacterial groups in the enrichment system were identified as members of the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Deltaproteobacteria subdivisions, CFB group, and Planctomycetes. In addition, the clone libraries constructed from Planctomycetes-specific 16S ribosomal RNA primers also verified that the enrichment allowed a diversity of Planctomycetes to proliferate, although the community composition was altered after enrichment.


Assuntos
Cianobactérias/isolamento & purificação , Lagos/microbiologia , Planctomycetales/isolamento & purificação , Biodiversidade , China , Cianobactérias/classificação , Cianobactérias/genética , Cianobactérias/crescimento & desenvolvimento , Ecossistema , Lagos/análise , Dados de Sequência Molecular , Filogenia , Planctomycetales/classificação , Planctomycetales/genética , Planctomycetales/metabolismo
20.
PLoS One ; 7(6): e40059, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22768219

RESUMO

Extensive use of chromium (Cr) and arsenic (As) based preservatives from the leather tanning industry in Pakistan has had a deleterious effect on the soils surrounding production facilities. Bacteria have been shown to be an active component in the geochemical cycling of both Cr and As, but it is unknown how these compounds affect microbial community composition or the prevalence and form of metal resistance. Therefore, we sought to understand the effects that long-term exposure to As and Cr had on the diversity and structure of soil microbial communities. Soils from three spatially isolated tanning facilities in the Punjab province of Pakistan were analyzed. The structure, diversity and abundance of microbial 16S rRNA genes were highly influenced by the concentration and presence of hexavalent chromium (Cr (VI)) and arsenic. When compared to control soils, contaminated soils were dominated by Proteobacteria while Actinobacteria and Acidobacteria (which are generally abundant in pristine soils) were minor components of the bacterial community. Shifts in community composition were significant and revealed that Cr (VI)-containing soils were more similar to each other than to As contaminated soils lacking Cr (VI). Diversity of the arsenic resistance genes, arsB and ACR3 were also determined. Results showed that ACR3 becomes less diverse as arsenic concentrations increase with a single OTU dominating at the highest concentration. Chronic exposure to either Cr or As not only alters the composition of the soil bacterial community in general, but affects the arsenic resistant individuals in different ways.


Assuntos
Arsênio/toxicidade , Biodiversidade , Cromo/toxicidade , Exposição Ambiental/análise , Consórcios Microbianos/efeitos dos fármacos , Consórcios Microbianos/genética , Microbiologia do Solo , Biblioteca Gênica , Genes Bacterianos/genética , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Paquistão , Filogenia , Polimorfismo de Fragmento de Restrição , Proteobactérias/efeitos dos fármacos , Proteobactérias/genética , Proteobactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Poluentes do Solo/toxicidade , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...